Volatile OrganicCompounds in PhoenixOutdoor Air - JATAP

Phoenix, AZ September 2011

Gerald (Gerry) Hiatt, Ph.D.
U.S. EPA, Region 9
415-972-3064
hiatt.gerald@epa.gov

Soil Gas and Indoor Air

- Vapor intrusion = soil gas entering overlying buildings
- Indoor air levels will be much lower than soil gas levels
 - most indoor air comes from outside (windows, doors)

Phoenix Outdoor Air Study

Joint Air Toxics Assessment Project (JATAP)

- ➤ A partnership of federal, state, local, and tribal air pollution control officials which include:
 - US Environmental Protection Agency (EPA)
 - Arizona Department of Environmental Quality
 - Gila River Indian Community (GRIC)
 - Salt River–Pima Maricopa Indian Community (SRPMIC)
 - Maricopa County Air Quality Control Department
 - Pinal County Air Quality Control District
 - Institute for Tribal Environmental Professionals at NAU
 - Inter Tribal Council of Arizona, Inc (ITCA)
 - Fort McDowell Yavapai Nation

JATAP

- ➤ Measure outdoor air concentrations of volatile organic compounds (VOCs)
- ➤ 6 locations throughout Phoenix & 1 rural background location (Queen Valley)
- Samples collected over a 24 hour period every 6 days

• • JATAP VOCs

- Mobile Source Air Toxics
 - 1,3-butadiene, acetaldehyde, formaldehyde, benzene, ethylbenzene, toluene
- Stationary Source Air Toxics
 - Chloroform, methylene chloride, trichloroethylene, tetrachloroethylene, styrene, xylenes, hexachlorobutadiene, vinyl chloride
- Background Air Toxics
 - Carbon tetrachloride

• • JATAP VOCs

JATAP Volatile Organic Compounds (VOCs):

- ➤ TCE (Trichloroethylene) M52
- ➤ PCE (Perchloroethylene) M52
 - "Tetrachloroethene" in JATAP
- ➤ Chloroform M52
- Acetaldehyde high risk
- ➤ Benzene high risk
- ➤ Formaldehyde high risk
- ➤ 1,3-Butadiene high risk

JATAP Locations

• • • Annual Average Concentrations

Air Toxic/Monitor	Supersite	Greenwood	S.Phoenix	W.Phoenix	SRPMIC	GRIC	Queen Valley
1,3-butadiene	0.47	0.62	0.64	0.71	0.15	0.13	0.03
Acetaldehyde	3.13	5.07	3.15				
Benzene	2.5	2.79	2.33	2.43	1.65	0.61	0.38
Formaldehyde	5.61	9.81	4.2				
Ethylbenzene	1.61	2.06	1.12	2.38	0.71	0.37	0.82
Dichoromethane	0.83	1.15	0.64	1.04	0.46	0.26	0.12
Tetrachloroethylene	1.43	0.89	1.32	0.94	0.76	0.35	0.18
Trichloroethylene	0.18	0.27	0.22	0.42	0.18	0.18	0.09
Carbon Tetrachloride	0.62	0.63	0.6	0.54	0.57	0.56	0.61
Chloroform	0.59	0.33	0.32	0.34	0.35	0.11	0.05
m,p-Xylene	4.32	5.43	3.46	4.84	1.83	0.88	0.82
o-Xylene	0.78	2.08	1.2	1.67	0.79	0.36	0.38
Styrene	0.76	1.71	0.4	0.82	1.96	0.35	0.11
Toluene	7.18	8.82	6.86	12.87	7.23	2.51	0.59
Vinyl Chloride	0.03	0.03	0.03	0.02	0.02	0.03	0.03
Hexachlorobutadiene	0.12	0.11	2.49	2.91	1.91	2.26	0.11

Protective Air ConcentrationsResidences

Risk-Based Screening Levels – Inhalation (Inhalation RBSLs)

- \rightarrow TCE: 1.2 µg/m³
- PCE: 0.4 μg/m³ (micrograms per cubic meter of air)

Basis:

- 1 in one-million increased chance of developing cancer
- ➤ 24 hours/day, 350 days/year, 30 years exposure

 Less frequent and/or shorter exposures = lower risk

• • JATAP - TCE

	TCE (ug/m3)				
	Average	Range			
Greenwood	0.27	0.05 - 1.7			
JLG Supersite	0.18	0.05 - 0.5			
St. Johns	0.18	0.07 - 1.0			
Salt River	0.18	0.07 - 0.65			
South Phoenix	0.22	0.07 - 3.13			
West Phoenix	0.42	0.07 - 11.42			
*Queen Valley	0.09	0.05 - 0.22			
Inhalation RSL: 1.2; Risk Range: 1.2 - 10					
* rural background					

• • JATAP - PCE

	PCE (ug/m3)				
	Average	Range			
Greenwood	0.89	0.16 - 8.1			
JLG Supersite	1.43	0.17 - 5.3			
St. Johns	0.35	0.09 - 2.2			
Salt River	0.76	0.09 - 17.7			
South Phoenix	1.32	0.02 - 33.3			
West Phoenix	0.94	0.02 - 13.64			
*Queen Valley	0.18	0.07 - 0.52			
Inhalation RSL: 0.41; Risk Range: 0.41 – 35					
* rural background					

• • • VOCs Higher in Phoenix

- ➤ VOCs higher in Phoenix compared to typical U.S. urban areas:
 - 1,3-butadiene
 - Acetaldehyde
 - Formaldehyde
 - Chloroform
 - Benzene
 - PCE

• • • Higher Risk VOCs

- ➤ Highest risk outdoor VOCs in Phoenix* (greater than 1 in one-million lifetime cancer risk):
 - Formaldehyde 34 in one-million
 - Benzene 8 in one-million
 - 1,3-butadiene 7.5 in one-million
 - Chloroform 3.6 in one-million
 - Acetaldehyde 3.4 in one-million
 - \blacksquare PCE 3 in one-million
 - TCE 0.23 in one-million
 - * Greenwood / JLG Supersite / South Phoenix / West Phoenix

QUESTIONS?